Ponatinib induces apoptosis in imatinib-resistant human mast cells by dephosphorylating mutant D816V KIT and silencing β-catenin signaling.
نویسندگان
چکیده
Gain-of-function mutations of membrane receptor tyrosine kinase KIT, especially gatekeeper D816V point mutation in KIT, render kinase autoactivation, disease progression, and poor prognosis. D816V KIT is found in approximately 80% of the patients with systemic mastocytosis, and is resistant to the first and second generations of tyrosine kinase inhibitors (TKI). The purpose of this investigation was aimed at exploring whether ponatinib (AP24534), a novel effective TKI against T315I Bcr-Abl, was active against D816V KIT. We discovered that ponatinib abrogated the phosphorylation of KIT harboring either V560G (sensitive to imatinib) or D816V mutation (resistant to imatinib) and the downstream signaling transduction. Ponatinib inhibited the growth of D816V KIT-expressing cells in culture and nude mouse xenografted tumor. Ponatinib triggered apoptosis by inducing the release of cytochrome c and AIF, downregulation of Mcl-1. Furthermore, ponatinib abrogated the phosphorylation of β-catenin at the site Y654, suppressed the translocation of β-catenin, and inhibited the transcription and DNA binding of TCF and the expression of its targets (e.g., AXIN2, c-MYC, and CCND1). Moreover, ponatinib was highly active against xenografted D816V KIT tumors in nude mice and significantly prolonged the survival of mice with aggressive systemic mastocytosis or mast cell leukemia by impeding the expansion and infiltration of mast cells with imatinib-resistant D814Y KIT. Our findings warrant a clinical trial of ponatinib in patients with systemic mastocytosis harboring D816V KIT.
منابع مشابه
Cancer Biology and Signal Transduction Ponatinib Induces Apoptosis in Imatinib-Resistant Human Mast Cells by Dephosphorylating Mutant D816V KIT and Silencing b-Catenin Signaling
Gain-of-function mutations of membrane receptor tyrosine kinase KIT, especially gatekeeper D816V point mutation in KIT, render kinase autoactivation, disease progression, and poor prognosis. D816V KIT is found in approximately 80% of the patients with systemic mastocytosis, and is resistant to the first and second generations of tyrosine kinase inhibitors (TKI). The purpose of this investigatio...
متن کاملThe antitumor activity of homoharringtonine against human mast cells harboring the KIT D816V mutation.
Gain-of-function mutations of the receptor tyrosine kinase KIT play a critical role in the pathogenesis of systemic mastocytosis (SM) and gastrointestinal stromal tumors. The various juxtamembrane type of KIT mutations, including V560G, are found in 60% to 70% of patients with gastrointestinal stromal tumors; loop mutant D816V, which exists in approximately 80% of SM patients, is completely res...
متن کاملEssential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers.
Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of gastrointestinal stromal tumors, systemic mastocytosis, and some acute myeloid leukemias (AML). Although juxtamembrane mutations commonly detected in gastrointestinal stromal tumor are sensitive to tyrosine kinase inhibitors, the kinase domain mutations frequently encountered in systemic mast...
متن کاملEXEL-0862, a novel tyrosine kinase inhibitor, induces apoptosis in vitro and ex vivo in human mast cells expressing the KIT D816V mutation.
Gain-of-function mutations of the receptor tyrosine kinase KIT play a key role in the pathogenesis of systemic mastocytosis (SM), gastrointestinal stromal tumors (GISTs), and some cases of acute myeloid leukemia (AML). Whereas KIT juxtamembrane domain mutations seen in most patients with GIST are highly sensitive to imatinib, the kinase activation loop mutant D816V, frequently encountered in SM...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2014